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A d d e n d u m  by A. Temkin and A.K. Bhatia to Chapter 25: Autoioniza t ion  

Since the original chapter, we briefly review two calculational methods used for basic applications 
in autoionization of fkw body systems: (a) complex rotation and (b) a pseudopotential method. 

Complex rotation, briefly mentioned above, has been extensively applied with great accuracy. Two 
additional basic systems to be mentioned here are H -  and Ps- (Ps=positronium). In complex rotation the 
particle distances are multiplied by a common phase factor 

(25.32) Ti  + T i e  il4 

Under this replacement the Hamiltonian is transformed 

(25.3 3) H +, ~ ~ - 2 i O  + Ve-i14 

(only Coulomb interactions are assumed). A real variational wave function @ is used (for the applications 
here, they are of Hylleraas form, multiplied by rotational harmonics of symmetric Euler angles of the desired 
angular momentum, parity, and spin [39]). The functional 

< @ / H I @  > < @ I T / @  > e -2 ie+  < @ / V I @  > e - i s  
- - (25.34) 

is evaluated. Minimization with respect to  the linear parameters, for a given value of 8, is carried in the 
usual way, but by virtue of the complex dependence on rotation angle the matrix elements Hij in matrix 
eigenvalue equation 

= <@I@ > < @I@ > 

det I Hij (8) - E A i j  I = 0 (25.35) 

are complex. Thus the solution of (25.35) gives rise to complex eigenvalues EA = Ex(8). For a given A, 
the optimum 8 is the one for which Ex(8) is affectively stationary as a function of 8 [40]. Results for ' D e  
states of H -  are given in the Table 25.5. Note no projection operators are used: the real part of the EA 
corresponds to the Breit-Wigner (Le. experimental) position of the resonance, and I m ( E ~ ) = r s w / 2  where 
J?sw corresponds to the Breit-Wigner (experimental) width of the resonance. These parameters thus include 
the full Feshbach values plus corrections, cf. Eq. (25.31). 

Using Hylleraas wave functions with up to 1230 terms in the complex rotation method, resonance 
parameters have been obtained for resonance states of H -  below the n=2 and 3 thresholds of HI which 
compare very well with those obtained using the projection-operators, R-matrix and close-coupling methods. 
Similar calculations for Ps- have been carried out [44]. Complex rotation method has been applied to 
autoionization states of many different systems including muonic [45] systems, as well as to study the 
combined effect of electric field and spin-orbit interaction on resonance parameters [46]. 

Table 25.5. Comparison of resonance parameters (in eV) obtained from different methods for calculating 
' D e  states in H - .  

Threshold Complex-cordinate R-matrix[41] Feshbach projection[42] 
n rotation[4O] Cf. Eq.(25.31) . 

2 10.12436 0.00862 10.1252 0.00881 10.1243 0.010 
E r E r E F  r F  

3 11.81102 0.04512 11.81097* 0.04449* 
*Close Coupling (18-state), Ref. [43]. 
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The second method that is included in this addendum is done so for the reason that it represents 
a rather different idea for the calculation of autoionization rather than being a more elaborate application 
of methodoligies that are already known, with results too numerous to be referenced here. The method, 
described as a pseudopotential approach, was introduced by Martin et al. [47]. An effective Hamiltonial, 
H e f f ,  is defined 

H e f f  = H + M P .  (25.3 6) 

M is a scalar parameter (i.e. a number), which will be taken very large, multiplying the P operator, Eq. 
(25.16). [Applications have thus far been restricted to one-electron targets and resonances below n=3 excited 
state.] In practice one minimizes the expectation value of H , f f :  

(25.37) 

using an arbitrary, quadratically integrable, variational function 4,.  In order to understand the nature of 
the spectrum that arises from this variation, we imagine 9, divided into its P and Q space components 

Q, = Q 9 ,  + P 9 ,  = @ + Sf (25.38) 

The expectation value < 4,1Heffl \E, > is written in matrix form 

(25.39~) 

The eigenvalue problem resulting from Eq.(25.37) reduces to finding the eigenvalues of the determinant 

(25.39b) 

Note, only the bottom right component contains the term M .  As a result the eigenvalues, which can readily 
be solved for from Eqs.(25.39), are in the limit of large M :  

(25.40) 

The lower eigenvalue is the desired Feshbach resonant energy f~ =< X Q Q  >. The width is calculated from 
[with our normalization, cf. Eq.(25.21)] 

where X E  is the solution of the exchange approximation 

Tt, is emphasized that this method only calculates the Feshbach energy, thus the shifts are not 
included. On the other hand the method uses no projeLiior opcrstcrs ir? cslmlating matrix elements of H ,  
and only the matrix elements of P by itself. This is much easier than a standard Q H Q  calculation. 
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In practice the matrix in Eq.(25.39) will expand to an N x N  matrix where N is the number of linear 
parameters in Q,, and (if one uses a Hylleraas form of Q,, for example) the matrix in Eq.(25.39) will not 
overtly divide itself into the simple form of this heuristic exposition pictured in Eq.(25.39). Nevertheless the 
conclusion holds; in detail the eigenvalue spectrum will span a range of values with those below the (n=2, 
in this example) corresponding to real resonances, and the largest eigenvalue will approach the value of M 
used in the specific calculation. 

A sample of results for the H e ( ' P )  resonances below the n=2 threshold of He+ taken from Ref.[47], 
with limited comparisons is given in Table 25.6. Note, the value of EF of the second resonance in the Martin 
et  al. [47] calculation is lower than the rigorous Q H Q  calculation [42]. It is believed that this is due to the 
residual M dependence of H , f f .  

Table 25.6. Resonance energies f ~ ( R y )  and widths(eV) for ' P  states of He below n=2 threshold (-1 Ry) of 

State Martin et a1.[47] Lipsky and Conneely [48] Bhatia and Temkin [42,49] 
Position Width Position Width Position Width 

~~ ~~ 

1 -1.38400 0.0382 -1.37672 0.0341 -1.38579 0.0363 

2 -1.19460 0.000146 -1.19312 0.000131 -1.19418 0.000106 

3 -1.12752 0.000860 -1.12584 0.00727 -1.12772 0.0090 
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